

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA Laser for E-mobility at the University of Bologna

Erica Liverani

Department of Industrial Engineering (DIN)

Staff

Prof. Luca Tomesani Full professor and manufacturing group coordinator

Prof. Alessandro Fortunato Associate professor and research group coordinator

Ph.D ing. Alessandro Ascari Senior assistant professor. Main research topic: laser welding and DED

Ph.D ing. Erica Liverani Research fellow. Main research topic: PBF additive manufacturing

Ph.D ing. Antonio Candido Research fellow. Main research topic: data science, modeling, machine learning for manufacturing

M.Sc Paolo Ferrucci Research fellow. Main research topic: Direct Energy Deposition

M.Sc Edoardo Folchitto Research fellow. Main research topic: PBF additive manufacturing

M.Sc Hambal Iqbal Ph.D student. Main research topic: the wire-arc additive manufacturing (WAAM) in fabrication of metallic components

M.Sc Eriel Pérez Zapico Ph.D student. Main research topic: laser welding for electric automotive components

Gruppo Laser: equipment and research activities

- 3 kW CW Laserline diode laser (1000 µm delivery fiber core diameter)
- 1.5 kW CW Laserline diode laser blu laser
- 6 kW CW IPG YLS Yb: fiber laser (50 µm delivery fiber core diameter)
- 3 kW CW nLight Yb:fiber laser (50 µm delivery fiber core diameter)
- 1 kW CW nLight **single mode** fiber laser (50 µm delivery fiber core diameter)
- 1 kW CW Trumpf Nd:YAG laser (300 µm delivery fiber core diameter)
- 300-3000 W **Q-CW** long pulse Yb:fiber IPG laser (50 µm delivery fiber core diameter)
- 200 W long pulse Nd:YAG Trumpf laser (400 µm delivery fiber core diameter)
- 20 W short pulse Yb:fiber IPG laser
- 7 W ultra-short pulse Ti:Sapphire Light Conversion laser
- GTV 2 hoppers powder feeder + GTV 6-ways powder nozzle
- 6 axes anthropomorphic robot + 1 axis rotary positioner
- Several fixed focal and galvo focusing heads
- Sisma Mysint 100 LPBF 3D printing machine

Research activities for E-mobility

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA

Production Systems for e-mobility: welding

Hairpins welding

Welding of electrodes, busbar and battery case

Aims:

Process investigation and optimization

		<u> </u>	
Spectrum 2	Wt%	Wt% Sigma	Atomic %
0	0.52	0.09	2.04
Cu	99.48	0.09	97.96
Total	100.00		100.00

Pouch batteries: Cu 0,3 mm – Al 0,45 mm

- Mechanical strenght: 100-130kg
- Electrical resistance: 20-40 μΩ

Battery case: Al 6082 1,5 mm – Al6082 4 mm

Production Systems for e-mobility: welding for battery case

During process investigation and optimization we usually use different approach and different process.

Example: LASER WELDING WITH OR WITHOUT FILLER WIRE for battery case.

Aims:

- Metallurgy control for crack susceptibility
- Misalignment and gap control
- Low heat input and low dilution between filler and base metal.

Production Systems for e-mobility: welding

Aims:

- Scale-up of knowledge from simple sample to real product geometries
- Optimization made by design of experiment or by means of machine learning

Porcess optimization by means of DOE

Hairpin Welding Processes

Porcess optimization by means of neural networks Ref:

Ref: Wirth & Fleischer 2019

Production Systems for e-mobility: welding

INTEGRATION OF COMMERCIAL SYSTEMS

• Precitec cutting head

Production Systems for e-mobility: welding activity (1)

PULSED vs QCW vs CW

LASER SOURCE WAVELENGTH: BLU laser

LASER MOTION COMPARISON: linear vs wobbling

IPG-YLR SM - Lineare

Production Systems for e-mobility: welding activity (2)

Production Systems for e-mobility: welding activity (3)

HYBRID MATERIAL AND HYBRID PROCESS EVALUATIONS

Aims:

- Lightening of battery case
- Cooling optimisation

Production Systems for e-mobility: electrodes cutting

Parameters optimisation and Scale-up to real electrodes cut according to the process production

Production Systems for e-mobility: electrodes cutting

In-depth analysis for process parameters/cutting quality correlations

Incision profiles for cathode as power and speed vary

Top and section SEM views of cathode cut edge following exposure at (a) 1 m=s; 500 kHz; 250 W and (b) 3 m=s; 1:5 MHz; 500 W

Production Systems for e-mobility: additive manufacturing

Production Systems for e-mobility: additive manufacturing

Industrial partners and collaborators

a coesia company

