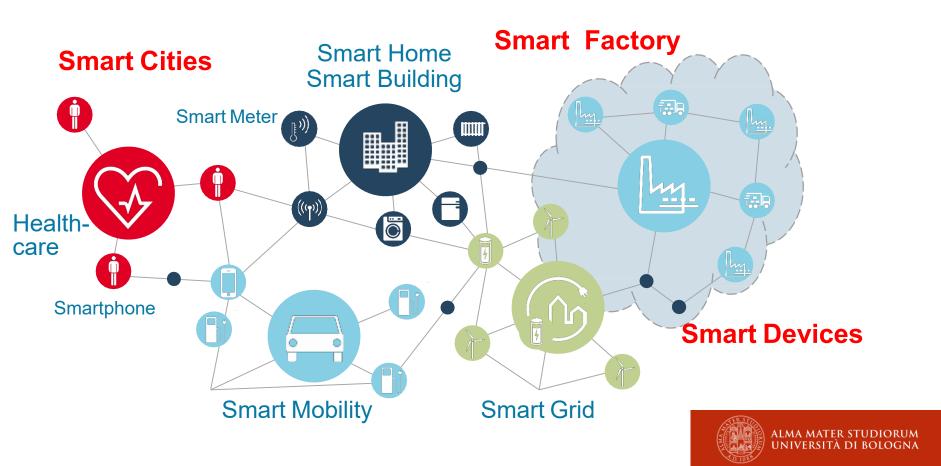


ALMA MATER STUDIORUM Università di Bologna

Big Data e Digital Twinning

Webinar BI-REX


Bologna, 14 Ottobre 2020

Paolo Bellavista

Dip. Informatica – Scienza e Ingegneria (DISI) Alma Mater Studiorum - Università di Bologna

Mobile Middleware Research Group

http://middleware.unibo.it

Agenda – Big Data e Digital Twinning nella Manifattura Avanzata

- «Quanto big» per essere efficaci ed efficienti?
- Un po' di chiarezza su:
 - tipologie di digital twin per Industria/Impresa 4.0
 - infrastrutture sw di supporto basate su edge/fog computing
- Big data for manufacturing nel progetto H2020 IA IoTwins <u>https://www.iotwins.eu/</u>

Real-world industrial data: is it really big?

2020 This Is What Happens In An Internet Minute

4

Real-world industrial data: is it really big?

Che cosa significa «big»?

- "In. Nel 2020 si raggiungerà la quantità totale di 40 trillion (10¹²) GB di dati, ovvero 40 ZB (40 * 10²¹); nel 2010 il totale era di "soli" 1.2 ZB), notare trend di crescita...
- [•]I. 90% del totale dei dati ora disponibili è stato creato negli ultimi 2 anni
- "In. Utenti Twitter inviano in media 0.5 milioni di tweet al minuto
- "I. Entro la fine del 2020, ogni persona genererà 1.7 MB al secondo

Non sempre bigger is better...

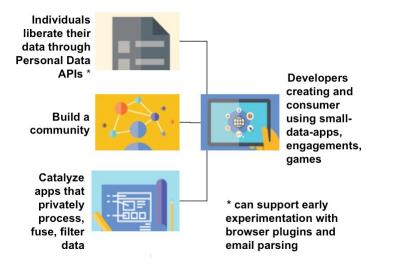
"In.Similar but diverse

"In similar operational conditions (context)

Non sempre...

"In.Similar but diverse

"In.Esempio di grandi raccolte cv per job placement e sistemi automatici di talent management


"In similar operational conditions (context)

*I. Esempio di fault detection e predictive maintenance ma in condizioni di «contesto» che possano essere considerate simili

Small Data

"I. Extracting value also from "small data" (D. Estrin, Cornell) by building and promoting the emergence of communities, ecosystems, ... fueled by companies in the manufacturing domain

- Stimolare raccolta di dataset anche piccoli ma estremamente *significativi per diversity, contesto simile,* ...
- **'II.** Segmentare utenti e datasource su base di profilazione con caratteristiche e obiettivi simili
- 'II. Creare una comunità di attori capace di *estrarre* valore da small dataset o da segmenti significative di dati
- **'ll.** Comunicare efficacemente il valore di questa opportunità vera di data sharing

Future opportunities

Business and technical challenges are future opportunities!

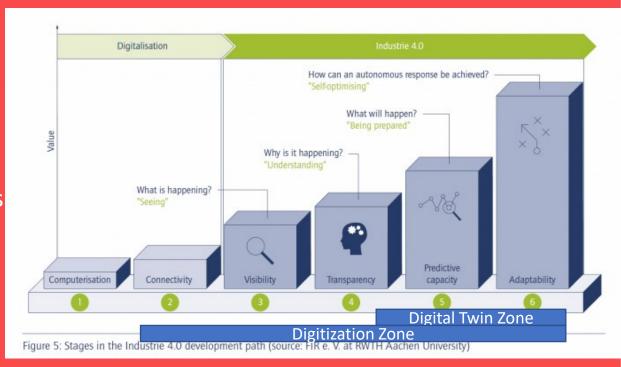
'II.Extracting value also from "small data"

- 'II. Specialization national/EU districts and the emergence of communities, ecosystems, ... which allow also SMEs to reach "the critical mass"
- 'II.Big data for manufacturing in Emilia Romagna?

The many promises of Smart Industry

- Management
 - OEE performance
 - Factory improvements
 - Planning & Logistics
- Product
 - Better uptime
 - Less cost (effective/efficient/lean)
 - More automated, less manual
 - Predictive maintenance
- Design process
 - Validate design
 - Redesign op basis van feedback

- Production process
 - New insight in processes
 - Impact / influence of parameters
 - Establishing baseline
 - Fault analyses / diagnosis
 - Process optimalisation
- Quality
 - Automatic quality
 - Validated production
 - Automated reports
 - Digital passport
- Customers
 - Better services
 - Faster Quotes



How do Digital Twins fit in?

Digital Twins are part of the digitization strategy, they require:

- a vision on digitization
- purpose in the processes
- the means to operate it
- the adaptivity of the organization

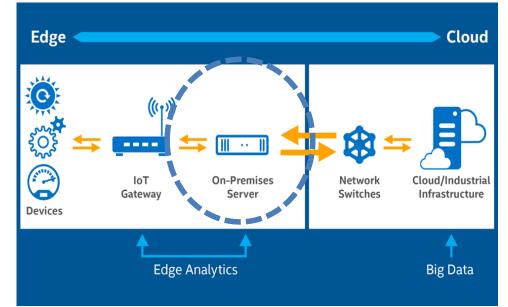
Digital Twins - a definition:

A digital twin is a *digital replica that is accurate enough* that it can be the basis for decisions given a specific purpose

Creating value by linking data, models & processes

The replica is often connected by streams of data The replica is aided by new IT infrastructures, e.g., edge/fog-enabled

Degrees of accurate enough Level of abstraction Complexity Company Description Factory Simple model Line Validated model Machine/Cell Adaptive model Component **Full Physics simulation** Single part



Obiettivi dei Digital Twin?

	Product	Production process
Design phase	 Virtual testing Stress testing Redesign based on user data 	 Virtual commissioning Bottleneck analysis Process optimisation Model-based definition
Operational phase	 Quality monitoring Anomaly detection Predictive maintenance 	 Zero downtime First-time-right production Zero-defect production Process optimisation Control optimisation Recipe optimisation Anomaly detection Root cause analysis

IoT: From Cloud Computing to Fog/Edge Computing

IoT Cloud Computing architecture

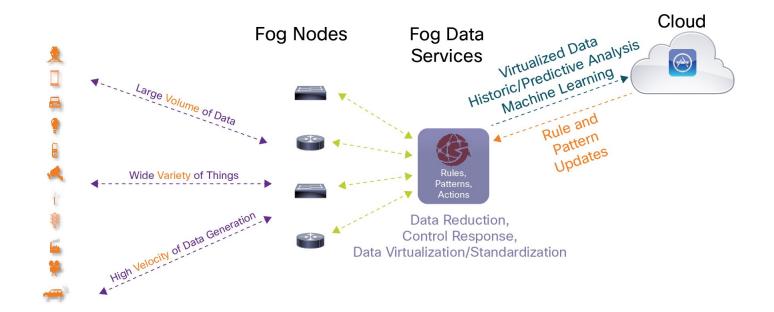
- most of the computation on the Cloud
- only gateways are deployed close to things
- gateways perform few and simple tasks

IoT Fog/Edge Computing architecture

- additional relatively powerful devices
- close to things, but between gateways and the Cloud
- complex analytical tasks on the client-side, before sending data to the Cloud

5G + Edge Cloud Computing

What is edge?


What is fog?

Edge Computing

Fog Computing

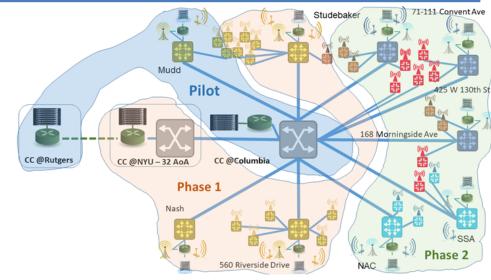
Cisco: **the fog extends the cloud** to be closer to the things that produce and act on IoT data

An extremely valuable enabler: 5G + Edge Cloud Computing

5G-enabled edge cloud computing is a crucial enabler for many 14.0 applications:

- ➢ Efficiency
- > Low latency
- Low cost
- ➤ Scalability
- > Interaction and collaboration (e.g., tactile Internet)
- Data sovereignty
- With customized properties of security, privacy, data protection, data aggregation/anonymization, ...

And not only for predictive maintenance!!!



5G + Edge Cloud Computing

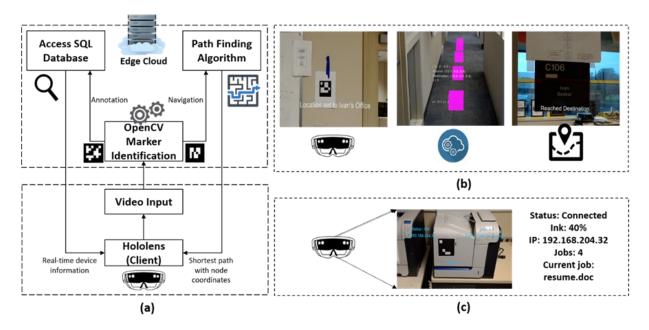
COSMOS Deployment: NYC Coverage Areas

- Pilot planned for end of 2018
- Phase 1 in 2019, Phase 2 by 2020

- Phase 1 Columbia/CCNY ~15-20 nodes
- Phase 2 ~40 nodes

Mudd

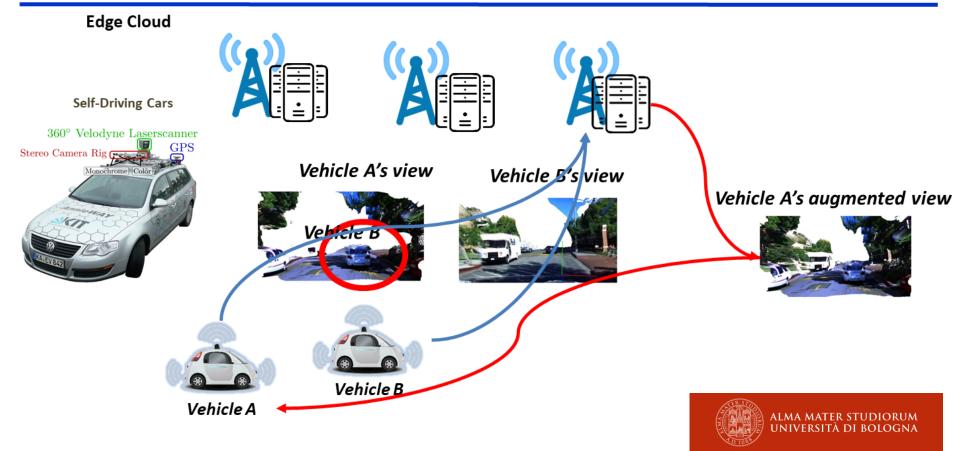
Broadway



Amsterdam

5G + Edge Cloud Computing

COSMOS Experiments: AR Applications



(a) AR application flow; (b) Smart meeting application using indoor navigation; (c) Annotation based assistance

5G + Edge Cloud Computing

COSMOS Experiments: Cloud Assisted Autonomous Vehicle

BIG DATA OPTIMIZE INDUSTRY AND SERVICES

INNOVATION ACTION

PROJECT REFERENCE 857191

SEPTEMBER 2019 - AUGUST 2022

TOTAL COSTS € 20,029,818.75

EU CONTRIBUTION €16,422,552.01 CALL IDENTIFIER H2020-ICT-2018-2020

TOPIC

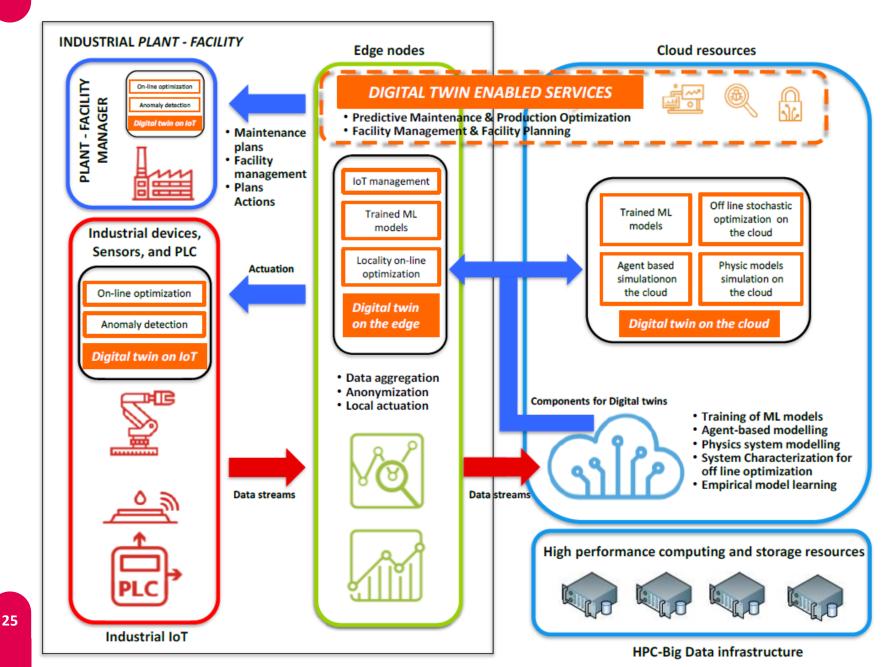
ICT-11-2018-2019 - HPC AND BIG DATA ENABLED LARGE-SCALE TEST-BEDS AND APPLICATIONS

COORDINATOR BONFIGLIOLI RIDUTTORI

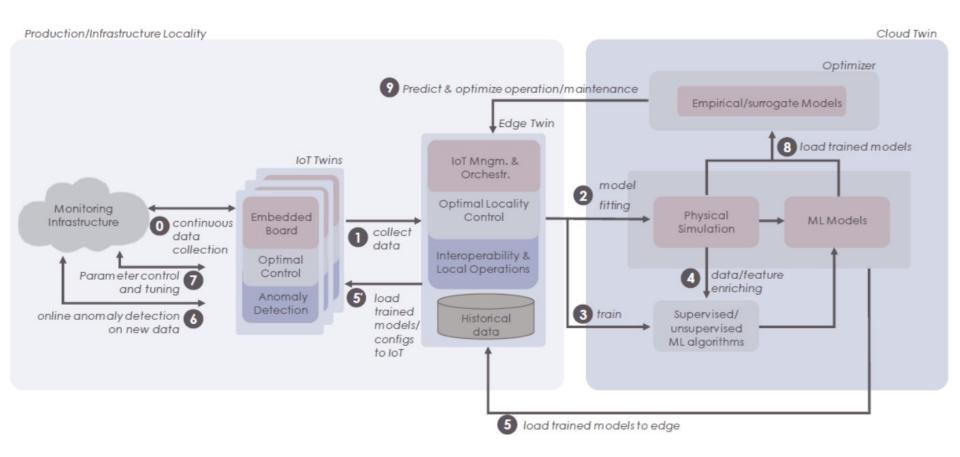
Concept and approach

- 'I. IoTwins is an EU project that will work to lower the barriers for the uptake of Industry 4.0 technologies to optimize processes and increase productivity, safety, resiliency, and environmental impact
- "In IoTwins approach is based on a technological platform allowing a simple and low-cost access to <u>big data analytics</u> functionality, <u>AI services</u>, and <u>edge</u> <u>cloud</u> infrastructure for the delivery of digital twins in manufacturing and facility management sectors
- "I. The approach is demonstrated through the development of 12 large scale testbeds, organized in three application areas: manufacturing, facility management, and replicability/scale up of such solutions

Platform and services


All the IoTwins testbeds share the same methodology, grounded on the concept of **distributed IoT-/edge-/cloud-enabled hybrid twins, to replicate complex systems**, with the ambition of predicting their dynamics and temporal evolution

Key elements:


- **'I.** A full-fledged platform enabling **easy and rapid access to heterogeneous cloud HPC-based resources** for advanced big data services
- *I. Al services to simplify and accelerate the integration of advanced Machine Learning algorithms, physical simulation, on-line and off-line optimization into distributed digital twins
- **'I.** Advanced edge-oriented mechanisms, tools, and orchestration to support Quality of Service in the runtime execution of the distributed digital twins

Digital Twins concept in IoTwins

Distributed Training and Control in IoTwins

4 industrial testbeds calling for predictive maintenance services (time to failure forecasting and generation of maintenance plans to optimize costs)

- Wind turbine predictive maintenance | Bonfiglioli Riduttori, KK Wind Solutions
- "I. Machine tool spindle predictive behavior | FILL
- "In. Predictive maintenance for a crankshaft manufacturing system | ETXE-TAR
- **'ll.** Predictive maintenance and production optimization for closure manufacturing | **GCL International**

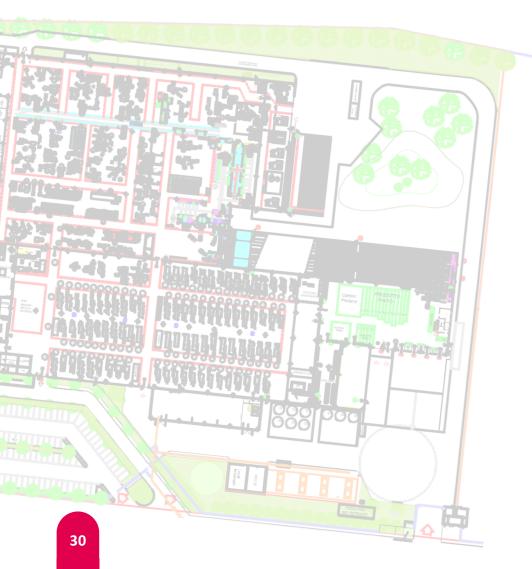
Testbeds

facility management

3 testbeds calling for identification of criticalities, optimization techniques to provide efficient facility management plans, operation optimal schedules, and renovation/maintenance plans

- "I. NOU CAMP Sport facility management and maintenance | Futbol Club Barcelona
- "I. EXAMON Holistic supercomputer facility management | CINECA
- "I. Smart Grid facility management for power quality monitoring | SIEMENS

Testbeds


replicability

5 testbeds to demonstrate the <u>replicability and scalability</u> of both IoTwins solutions and the former manufacturing and facility management testbeds

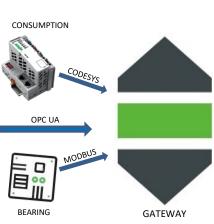
- "III. Patterns for smart manufacturing for SMEs | Centre Technique des Industries Mécaniques
- Istituto Nazionale di Fisica Nucleare, Barcelona Supercomputing Center
- "In Standardization/homogenization of manufacturing performance | GCL International
- In NOU CAMP replicability towards smaller scale sport facilities | Futbol Club
 Barcelona
- "In Innovative business models for IoTwins PaaS in manufacturing | Marposs

Use case 1: Guala Closures

Target Plant: Spinetta Marengo (ITA)

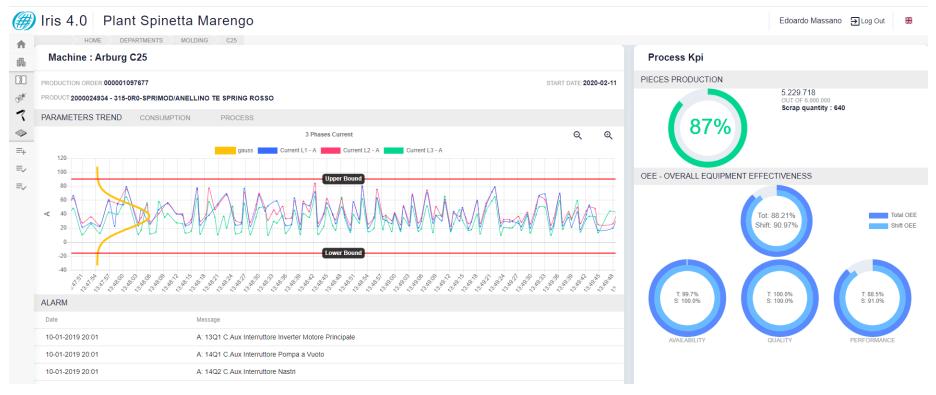
'II. More than 200 production machines

Identification of the use case


"I. Aim: *prevent extraordinary maintenance* through *prescriptive maintenance*

"In. Target machine: MOLDING press

Ongoing activities


Identification of additional sensors

- "In. Consumption
- **'II.** Bearing Vibration/Temperature/Acceleration
- "In. Bearing breakage event

Trend prediction based on modeling + unsupervised learning

Hybrid Digital Twins

Digital twinning for smart grid in Aspern, Wien

- "In. State-of-the-art living lab project started 4 years ago
- **'I.** 12 secondary substations with a total of 24 transformers (one of which is a tap changer) and grid monitoring devices that act as data sources
- "I. 1.5M data points are processed by the associated datacentre each day

Digital twinning for smart grid in Aspern, Wien

The challenge of FEDERATED

I. Edge devices based on CP-8050 energy automation device from Siemens

- **'I.** A use case in which edge devices are cooperating with the backend **to locally identify global outliers**
- **'I.** *Power quality measurement* devices are installed, but their raw data is NOT suitable to be forwarded to the backend, *because of volume*
- "In. Edge- and cloud-based digital twins to achieve an overall view on the state of the power grid
- "In. Based on this generated information, *new config parameters are extracted and forwarded to the edge nodes*
- "In. Based on the local and global data, edge devices provide *feedback for parameter tuning*
- "In. and *do anomaly detection locally*
- "In. More in general, support to grid operation/planning

ALMA MATER STUDIORUM Università di Bologna

Paolo Bellavista

Dip. Informatica – Scienza e Ingegneria (DISI) CIRI ICT BI-REX Competence Center per Impresa 4.0

paolo.bellavista@unibo.it

www.unibo.it