

Cell Welding in AVL Battery Development Process 18/11/2020, BI-REX - Bologna Process Innovation and Industrialization

Francesco Mastrandrea

Index

AVL Worldwide Battery Competencies & Facilities

Battery Thermal Runaway and Importance of Cell Welding

Welding Development Process

New Innovation Center and Virtualization

Facts and Figures

AVL ob

Global Footprint

Represented in 26 countries

45 Affiliates divided over 93 locations

45 Global Tech and Engineering Centers (including Resident Offices)

1948

Founded

11,500

Employees Worldwide

10%

Of Turnover Invested in Inhouse R&D

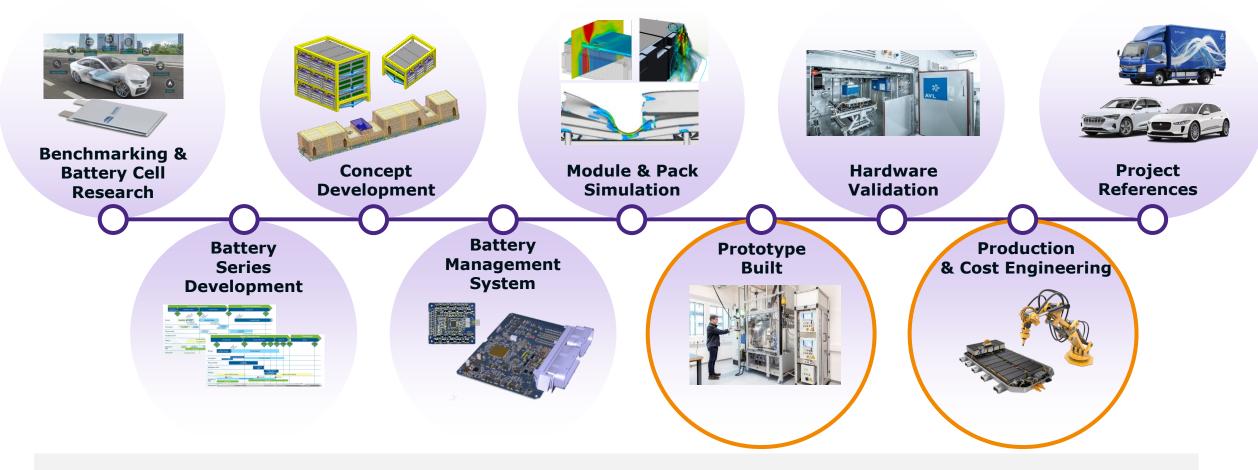
70+

Years of Experience

65%

Engineers and Scientists

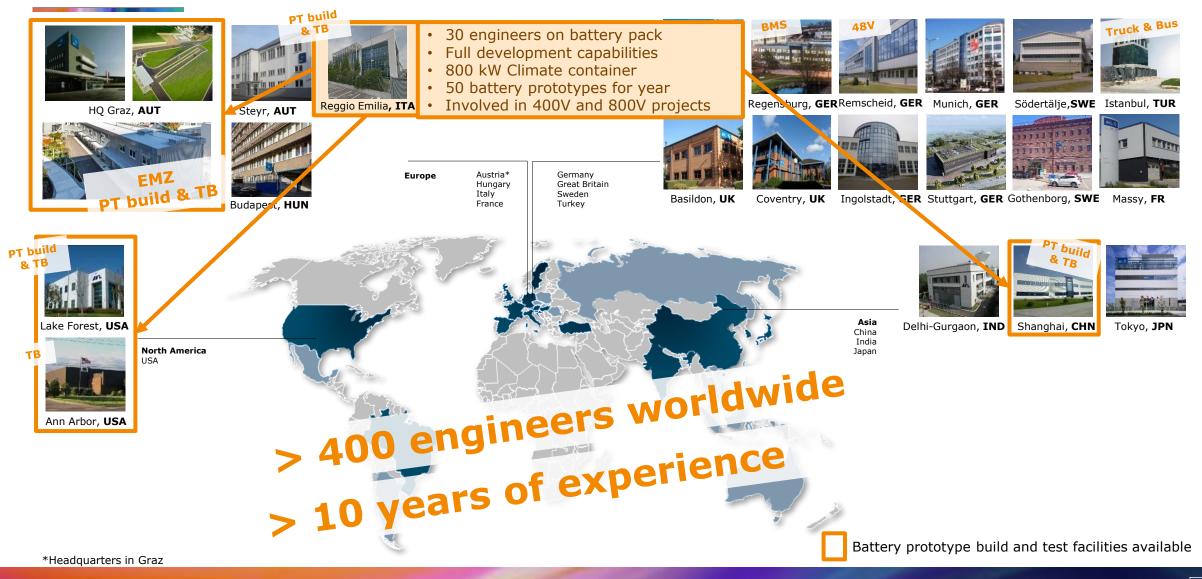
1,500


Granted Patents in Force

96%

Export Quota

AVL Battery Competencies


Public

AVL supports **battery development** projects from first drawing to SOP with **battery module and** pack development services, as well as **BCU software** and hardware.

Global Battery Competence Team and Italian Branch

Public

Vehicle Recalls in 2020 for Battery Problems

Engadget

Public

GM recalls 68,000 Chevy Bolt EVs after reports of battery fires

/ 6

RNZ

Hyundai NZ recalls Kona electric car due to battery fire risk

Hyundai NZ recalls Kona electric car due to battery fire risk. 5:55 pm on 24 October 2020. Share this. Share on Twitter; Share on Facebook · Share via email ...

3 weeks ago

AutoExpress

Ford Kuga recall: Ford finds fix for faulty PHEV battery pack

The recall process was set into motion this summer, after Ford received four reports of Kuga PHEV models catching fire. The problem was ...

FN FleetNews

BMW recalls plug-in hybrid models due to fire risk

The recall affects plug-in hybrid versions of the 3, 5 and 7 Series, the X1, X2, X3 and X5 SUVs, the 2 Series Active Tourer and the Mini ...

Cell Welding influencing the electrical resistance and it could represent a trigger for Thermal Runaway

Francesco Mastrandrea | AVL Italy | 18 novembre 2020 | AVL 🗞

Conventional vs. Electrification - Production & Processes

Comparison	Modu	ılarity	Mat	urity	Vola	itility	Qua	lity	Availa	ability	Further Challenges for Traction Batteries:
Product architecture Assembly concepts	Fo-I Fo-I	I⊡I I⊡I	I=I I=I	I⊡I I⊡I	ĪqI	Ī⇔ī	Io: Io:I	I⇔ĭ I⇔ĭ			 Cost Dominance of cell costs
OEM Assembly Standards				Ī⊡Į		Ι⇔Σ		Ī⇔Į		Ī⇔₫	 Safety & Quality Challenges
Material Cost Component technology Concepts	D	Ī⇔₫	IoI	Ī≕₫]tār]	I⊡I 		I⊡I	I=I I=I	Ĩ≕₫ Ĩ≕₫	-Multiple, high-volume manual assembly steps -High Volume cell testing
Quality Risks					F	Ī⊡ī		Ī⊡ī			-EoL test concepts
Supply Chain	ΕΦΞ	Ţε⊒₹	БЭ	Ī⇔Į	ΕÞΙ	Ī⊡Į	Feri	Ĩ⊡Į	-	F⊡ð	 Supply Chain Challenges
Welding technologies & Quality	Foi	Ī⇔I	Ε	Ī⇔Į			Fol	Ī⇔Į	ΙΦΕ	I⇔I	-Make-or-buy module / pack
Gluing Processes	F	Ī⊡Į	F	I⇔I			F	Ī⇔₫			-Non-automotive supplier development
Supplier Structure	Þ	Ī⇔₫	-	Ī⇔₫	F	Ī⊡₫		Ī⇔₫	F	Ι≕Σ	
Process time			Fer	Ī⊡Į		Ī⊡Į					

Welding in Electrification is not robust yet as in the Conventional Vehicle

Cell2Cell (Module) Manufacturing Core Technologies

Core Process	Issue/Challenge	Solution Approach	Activity during Development		
Coll Testing	Automation to achieve cycle times & reliability	High-speed reading & automated handling of cells	Principle tests carried out within automated cell testers		
Cell Testing	Automated check against outgoing inspection values	Big data competence	Currently built up		
Stacking	Handling & alignment	Process (IP) development	Testing of production principle		
Cell gluing	Application of correct amount / component tolerances	Application development w/ suppliers	Application development w/ suppliers		
Welding	Cycle times, weld quality	Build-up of specific welding know- how, partnerships	Welding equipment & parameter tests		
EOL testing	Cycle times vs. investments	EOL testing time minimization	Incremental test program development		
Areas of Innovation					

Cell to Cell Welding Technologies Landscape

Laser Welding

(thickness, mat.

& combinations)

Different welding

Low maintenance

/ 9

High flexibility

High speed

geometries

All cell types

operation

seams

efforts

Very high

investment


+

+

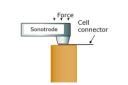
+

+

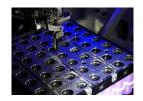
±

Micro Tig Welding

- + Prototype production
- + Low investment
- Long tact time (1 sec)
- Less electrical connection area
- High cleaning efforts
- Mainly cylindrical cells
- Limitation busbar thickness

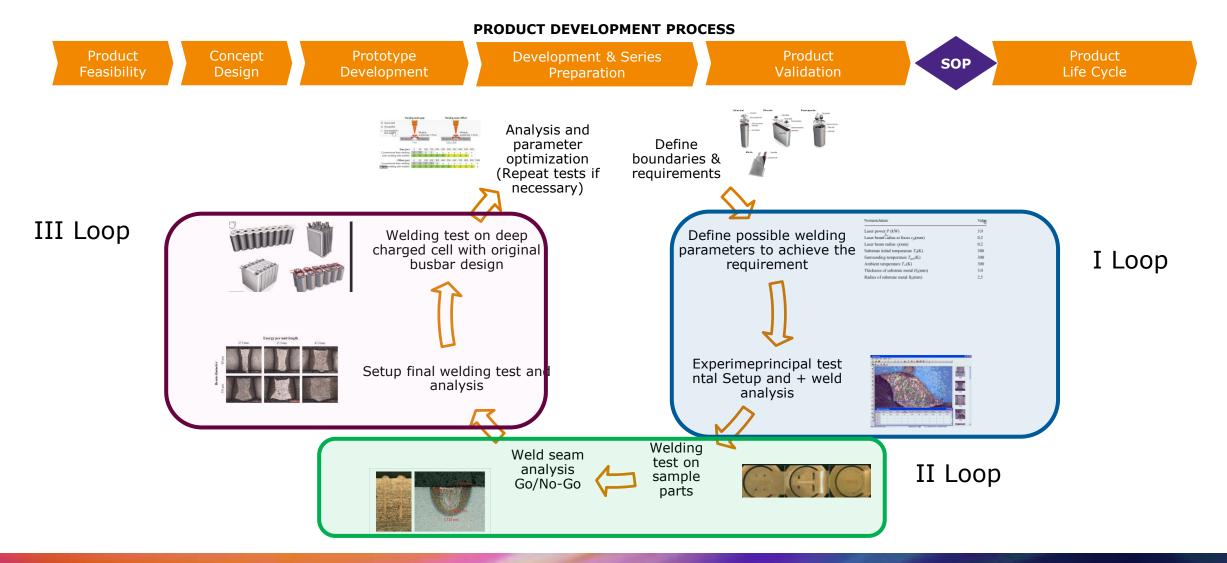


Resistance Welding


- + Very low investment
- Longer tact time (1 sec)
- Electrode cleaning
- Heat impact on cells
- Mainly cylindrical cells
- Limitation busbar thickness

Ultrasonic Welding

- + Flexible material thickness
- + Low heat impact
- High holding force
- Sonotrode cleaning
- High investment
- High efforts
 - clamping/fixation



Wire Bonding

- + No melting of cell pole
- + Flexible material thickness
- + Low heat impact
- Less electrical connections area
- Cleanliness requirements
- High investment
- High efforts clamping/fixation

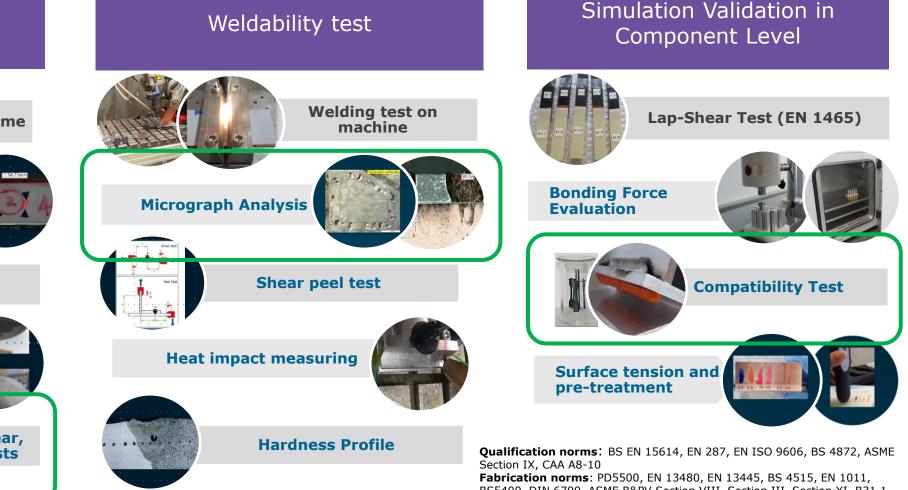
Welding Development Process

Public

Component Testing & Welding Assesment Battery Development

Characterization Adhesive, Foam & Sealing

Hardness testing & curing time


Shrinkage & thermal expansion

Tensile Test

Compression Tests

ests

alon & Shear elon ______ Pull, Shear, Peel Tests

BS5400, DIN 6700, ASME B&PV Section VIII, Section III, Section XI, B31.1, B31.3, B31.4, B31.8, AWS D1.1, API 1104, API 510, API 620

AVL Battery Innovation Center: Fusion of Function & Process Development

- Flexible center for production-oriented manufacturing of proto battery modules and packs
- Process development for specific assembly procedures in battery production
- Close loop feedback to product development (DfM Design for manufacturing)
- Serve higher volumes in A- & B-samples
- Provide capacity for field test fleets, racing series and Csamples
- Provide industrialized designs and processes "ready for ramp-up"
- Leveraging of Engineering Business for battery development
- Verify Eco-Design products in respect to recycling and cost

Flexibility in Manufacturing

Virtual Steps in Industrialization for Welding Process Validation in Manufacturing

- VR concept review
- Preview of steps
- Safe worker training

- 2-part head / gripper design
- additive manufactured Grippers
- Robots within A-sample assembly

- Innovative processes
- Rapid Tooling
- VR manufacturing instructions
- Worker training on new parts or hazard steps

Thank you

www.avl.com

Francesco Mastrandrea Skill Team Leader Electrification francesco.mastrandrea@avl.com