Additive Manufacturing Industriale di protesi articolari personalizzate

@BiRex - 24/09/2020

Pierfrancesco Robotti
Technology and BD Manager @ Lincotek Medical
Core Business: Industrial Manufacturing Services
Multinational Organization - 100% Privately owned – HQ in Parma, Italy

Lincotek Group Divisions:

- 2 Vertical divisions
- 2 Horizontal divisions

Lincotek Surface Solutions
- Processing parts for commercial aircrafts and helicopters.
- Coatings for components in the hot gas section.

Lincotek Medical
- Processing parts for Small to large Gas Turbine (4 to 567MW).
- Coatings for components in the hot gas section (Airfoils, turbine blades, parts in the combustion chamber).

Lincotek Equipment
- Orthopedic devices design and development
- Orthopedic devices Manufacturing
- Equipment for Thermal Plasma Spray Coating and its ancillary processes
- Design & mfg of std and custom TPS equipment with high degree of automation.

Lincotek Additive
- Develop and Exploit the AM tech
- Focus: Orthopedic implants and Instruments, Components for IGT and Aerospace.
Lincotek Medical is a Contract DESIGN & Contract MANUFACTURER in Orthopedics

Design
Prototyping & Serial Manufacturing
Post-processing
Packaging

Output sales to the OEMs
OEMs sell to Hospitals

Forging / Casting
Machining
Additive Manuf.

Coatings (TPS, Electrochemical, PVD)
Surface Treatments & Polishing
Cleaning

Labelling, Marking, Clean Room Packaging
Sterilization

Legend
Done internally
Done externally
Comprehensive Development & Manufacturing Expertise

- Over **130 Orthopedic OEM’s served worldwide**: Europe, US, Asia
- Approximately **2.5 Million Orthopedic devices** produced **annually** (10K per day)
- **ISO 13485 QMS**: FDA, NMPA and JMHLW registered sites;
Lincotek Medical Global Footprint

R&D / Product Development:
Logan, UT – U.S.A.
Bologna, Italy
Trento, Italy

Additive Manufacturing:
Trento, Italy
Memphis, TN – U.S.A.

Casting:
Portland, OR – U.S.A.

Precision Machining:
Bologna, Italy
Logan, UT – U.S.A.
Dayton, OH – U.S.A.
Portland, OR – U.S.A. (Femoral Grinding/Finishing)

Coating:
Trento, Italy
Salerno, Italy
Wuxi, China
Memphis, TN – U.S.A.
Cincinnati, OH – U.S.A.

700+ employees worldwide
Lincotek Additive (Medical) at a glance

R&D
- Trento
- Additive machines dedicated to R&D
- PBF technology (EBM and Laser)

Medical Materials:
CpTi, Ti6Al4V, CoCrMo, 17-4 SS, Ceramics (R&D phase)

Validation and codesign:
- AM process validated for implantable medical device requirements (CE and FDA)

Serial Production
- production locations in Italy (Trento), USA (Memphis, TN), China (2021 – Wuxi, Jangsu)
- 22 machines in production with equipment and processes validated for implantable components
- more than 500,000 parts produced, operational since 2007
- +100K AM orthopedic implants manufactured in 2019.
We take care of AM process, starting from co-design over process development to finished product, **in the scale up perspective**. We believe in **AM for massive production**, either serial or customized.
One example: Integrated Supply Chain at work for AM Ti DMLS orthopedic devices
AM as a Manufacturing “step” within a manufacturing process

- Design (customer/Tech. Dpt.)
- Additive Manufacturing
- Machining
- Postprocessing (surface modification)
- Quality Controls
- Marking, final cleaning, Clean room packaging, sterilization
- Powder raw material
- Powder recycling step
- Cleaning from residual powder
- Furnace
- AM and the ISC
- Cutting from starting plate (SLM) Supports removal

24/09/2020
AM OF CUSTOM MADE ORTHOPEDICS COMPONENTS
Patient Specific and Custom Made Implants

Tumoral recon, extreme revisions, rare diseases, large trauma not for urgent treatment, etc;

These are typical situations where the custom made implant is the preferred (if not unique) approach.

Main Characteristics and constraint: **Reactivity & Delivery Time**: (e.g. ~3 to 6 weeks)

Final Product: Custom Made Titanium alloy Pelvis Implant
Patient Specific and Custom Made Implants

AM play as enabling technology thanks to its flexibility in accommodate geometrical shapes along with topographic features.
Patient Specific and Custom Made Implants

Execution demand a **fast, reactive and flexible** Integrated Supply Chain where AM is complemented by all the other essential manufacturing steps: from **design** to a ready to use part – at the OR.

Design for Additive Manufacturing:

Engineering a porous structures for A.M.

With Additive Manufacturing high theoretical design freedom however:

Constraints due to trade off mechanical & wear performances vs foams pores size and struts size – device vs osseointegration;

MORPHOLOGICAL MECHANICAL TRIBOLOGICAL

Regular

Irregular

Random

24/09/2020
Design for Additive Manufacturing:

EXAMPLE OF A CRITICAL DESIGN STEP IN THE POST PROCESSING PERSPECTIVE

- **Design for Cleaning:**

 It is mostly about printing parts compatible with the Cleaning Method(s) to be employed

Constraints due to actual possibility of cleaning the porous surfaces
CRITICAL DESIGN STEPS IN THE POST PROCESSING PERSPECTIVE

- Design for Additive Manufacturing:

- Design for Post Machining:

 ✓ Deviation from near net shape only to favor post milling-turning: i.e. clamping areas, reference points for alignment, the amount of extra material to be machined out etc..

 ✓ Trade off:
 Minimize extra material: only manufacture what is needed, limit the dimensions of the surface “uncoated”.
 Increase the extra material to help reliability of output (i.e. minimize scrape rate).

Courtesy Smith&Nephew
MACHINING AM components

Main Challenges:

• Working parameters are definitively different from forged material.

• Working parameters are definitively different EBM from DMLS and the former is more difficult to machine in comparison with the latter.

• Surface roughness is mainly linked to advancing speed

• Tools wear is mainly linked to advancing speed

• Avoid or remove contaminants in the porous structure

Courtesy Ampower - https://additive-manufacturing-report.com/
Smoothing or Polishing, main challenges:

• Get different surfaces finishing on the same part, especially on contiguous areas

• Reduce roughness in the solid and preserve the roughness on the lattice structure

• Leave the part clean (residuals free)

• Use of processes suitable for mass production
LATTICE: CLEANING OF LUBRICANTS or PASTE RESIDUALS

Original state after machining: typical powder beads on the surface of lattice struts with grease residuals are visible

Specific post machining cleaning necessary to eliminate process residuals
Resuming and Conclusions

Custom Made AM at Lincotek

- Advanced manufacturing process; there is no «magic» inside
- Same as for serial production, exploit as much as possible solutions already available to enable fast execution
- Need of accurate design at macro and micro level
- Understanding AM is just a part of a wider manufacturing flow

- Scientific approach
- Continuous R&D activities
- Continuous training of engineers and operators
- Continuous technology update to stay “on the edge”
- Equipment and process validation
- Raw material sourcing selection, qualification
- Machine dedicated to a single material
- Co-design of the geometry with the customer. Leverage on validated process for the rest
- Dedicated post processing
- Be oriented on Custom Made production
Q & A

francesco.robotti@lincotek.com
Thank you
lincotekmedical.com